4,870 research outputs found

    Real-time Information, Uncertainty and Quantum Feedback Control

    Full text link
    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.Comment: 24 page

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019

    Improving Accuracy of Virtual Machine Power Model by Relative-PMC Based Heuristic Scheduling

    Get PDF
    Conventional utilization-based power model is effective for measuring the power consumption of physical machines. However, in virtualized environments its accuracy cannot be guaranteed because of the recursive resource accessing among multiple virtual machines. In this paper, we present a novel virtual machine scheduling algorithm, which uses Performance-Monitor-Counter as heuristic information to compensate the recursive power consumption. Theoretical analysis indicates that the error of virtual machine power model can be quantitative bounded when using the proposed scheduling algorithm. Extensive experiments based on standard benchmarks show that the error of virtual machine power measurements can be significantly reduced comparing with the classic credit-based scheduling algorithm

    Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    Full text link
    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (LRL_R), X-ray luminosity (LXL_X) and BH mass (\mbh), the so-called `fundamental plane' (FP) of BH activity. Yet the supporting data are very limited in the \mbh regime between stellar mass (i.e., BHXBs) and 106.5^{6.5}\,\msun\ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the \cite{2012ApJ...755..167D} sample. As a result, we obtained 19 new low-mass AGNs for FP research with both \mbh\ estimates (\mbh \approx 10^{5.5-6.5}\,\msun), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature.Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined dataset of BHXBs and supermassive AGNs by \citet{2009ApJ...706..404G}; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different \mbh. In view of the FP relation, we speculate that the radio loudness R\mathcal{R} (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on \mbh.Comment: ApJ accepte
    • …
    corecore